Study the Effect of Onion, Garlic and Chicory Powder on Immunity System Parameters in Rats

1 Zeinab S. Ahmed Ahmed And 2 Abeer N. Abdel Rahman

1 Home Economic Dept., Nutrition and Food Science, Faculty of Specific Education, Assiut University, Egypt.
2 Department of Nutrition and Food Science, Faculty of Home Economics, Menoufia University, Shebin El-kom, Egypt.

*Corresponding author: Email:dr.Abeer.nazeih37@yahoo.com
Study the Effect of Onion, Garlic and Chicory Powder on Immunity System Parameters in Rats

1 Zeinab S. Ahmed Ahmed And 2 Abeer N. Abdel Rahman

1 Home Economic Dept., Nutrition and Food Science, Faculty of Specific Education, Assiut University, Egypt.
2 Department of Nutrition and Food Science, Faculty of Home Economics, Menoufia University, Shebin El-kom, Egypt.

*Corresponding author: Email: dr.Abeer.nazeih37@yahoo.com

Abstract

The present study aimed to illustrate the effect of diets enriched with onion, garlic and chicory powder by the percent of 2.5 and 5% on the immunity system parameters of rats. Forty-two (42) male albino rats ((Sprague- dawly strain) weighting (150-160g) used in this study and divided to 7 groups each (6 rats). The control group received basal diet all the experimental period, the other experimental groups including 36 rats were fed on basal diet containing 2.5 and 5% of onion, garlic and chicory powder for (4 weeks). The results appeared that feed intake showed a few differences at (p≤ 0.05) comparing with control, body weight gain showed a few differences at (p≤ 0.05) comparing with control. Immunological profile (IgA, IgG and IgM) showed significant increases comparing negative control group recorded (145± 1, 184,47±0.5 and 134.5±0.5 mg/dl) . For CBC analysis (HB, HCT and PLT) were significant increase comparing with control recorded (11.6±0.1%, 47.2±0.72% and 637.33±3.05cm) . WBC and RBC were significantly increased comparing with control recorded (6.83±0.21 and 7.55±0.06 cm). In conclusion. The tested plants in this study were effective as promoting the immunity system. We recommended more consumption of the tested plants as fresh or dried in our diets.

Keywords: IgA, IgM, IgG, HB, HCT, PLT, WBC, RBC.
Introduction

The immune system is essential for survival. Without an immune system, the bodies would be open to attack from bacteria, viruses, parasites. Immune system that keeps us healthy as we drift through a sea of pathogens (Mohammad et al., 2020).

The immune system is spread throughout the body and involves many types of cells, organs, proteins, and tissues. Crucially, it can distinguish tissue from foreign tissue — self from non-self. Dead and faulty cells are also recognized and cleared away by the immune system (Daniel, 2018).

White blood cells are also called leukocytes. They circulate in the body in blood vessels and the lymphatic vessels that parallel the veins and arteries. White blood cells are on constant patrol and looking for pathogens. When they find a target, they begin to multiply and send signals out to other cell types to do the same and there are two main types of leukocyte (Lindsay, 2016).

Many dietary bioactive food components interact with the immune system with the potential to reduce the risk of chronic diseases (Ferguson and Philpott, 2007).

Garlic (Allium sativum L.) is a member of the Liliaceae family, is an aromatic herbaceous annual spice and its consumption has been dated back over 6000 years as a food ingredient with medicinal properties. Garlic contains organo sulfur compounds that provide a unique odor and flavor, and potential health benefits (Badal et al., 2019) and (Butt et al., 2009).

It is a member of the lily family, which has been widely used as an ancient folk medicine in India, Egypt, Greece, Rome and China to treat various sicknesses, including abdominal pain, parasitic infections and rheumatism (Butt et al., 2009)
It is consumed worldwide as food and traditional remedy for various diseases. It has been reported to possess several biological properties including anticarcinogenic, antioxidant, antidiabetic, anti-atherosclerotic, antibacterial, antifungal, anti-hypertensive, antiviral, antifungal, antiprotozoal and anti-inflammatory activities in traditional medicines (Gaber et al., 2020).

Garlic contains many valuable compounds such as iodine salts which have positive effects on the circulatory system. Garlic also contains many vitamins such as vitamin A,C and B complex as well as linoleic acid. Garlic is rich in calcium, phosphorus, carbohydrates and generally, has a high nutritive value (Draganet al., 2008).

It should be considered as a dietary anti-inflammatory supplement that in the long term might lead to the reduced risk of certain types of cancers, an effect known for long-term usage of aspirin (Jacobs et al., 2007). Extracts and isolated compounds of A. sativum have been evaluated for various biological activities (Gaber et al., 2020).

Garlic derivatives and aged garlic extract (AGE), an odorless product containing S-allylcysteine (SAC) and S-allylmercaptocysteine (SAMC), have shown immunomodulatory effects by improving the immune response, resulting in attenuation of the effects of cardiovascular disease and inflammatory-associated processes (Ahmadi et al., 2013).

Onion (Allium cepa) is original from central Asia and is one of the oldest cultivated plants since it has been in cultivation for more than 4000 years. It is a major and popular vegetable crop product that is widely cultivated, it used as a food ingredient in the Mediterranean diet that has a high production and consumed raw, cooked or processed into different onion products in the daily diet (Marta and Mar, 2012).
Onion characteristic flavor, is the third most essential horticultural spice with a substantial commercial value (Joaheer et al., 2019). Onion contain bioactive compounds such as organosulfur compounds and polyphenolic compounds with potential beneficial health effects including antimicrobial, antioxidant, analgesic, anti-inflammatory, anti-diabetic, hypolipidemic, anti-hypertensive, and immune-protective effects (Yosuke et al., 2019). Onion contains small quantities of fat. Sugar and vitamins A, C, and B complex, it is rich in magnesium. Potassium and copper (Gabor et al., 2010).

It contains large amounts of flavonoids that are responsible for the reported antioxidant activity, immune enhancement, and anticancer property (Elberry et al., 2014).

Chicory (Cichoriumintybus L.) is mostly known for its multiple uses in the food industry and herbal medicine. This plant has long been consumed as a vegetable by humans. Leaves and root have been used for thousands of years for nutritional purposes. Chicory was already cultivated as a medicinal plant by the ancient Egyptians and is still used in traditional dishes in various parts of the world (Puhlmann and De-Vos, 2020).

The whole plant is also known for its hypoglycemic and hypolipidemic properties, hypothetically due to the chlorogenic acids content of chicory (Jackson et al., 2017). Extracts of chicory roots have also been stated to have antimicrobial (Liu et al., 2013), immunomodulatory, anti-inflammatory (Lee et al., 2015), and anti-cancer properties (Behboodi et al., 2019).
Chicory roots are rich in fiber, Inulin and bioactive compounds. Inulin was adopted as a functional ingredient and various studies evaluated its efficacy as prebiotic, for promoting good digestive health, for influencing lipid metabolism and for its beneficial roles in optimum plasmatic levels of glucose and insulin maintaining (Ahmed and Rashid, 2017), Chicory was already found responsible for various antimicrobial effects (Puhlmann and De -Vos, 2020), Chicory plays an important role in immunity and inflammation reducing by regulation the recruitment of immune cells (Sun et al., 2015).

This study aimed to illustrate the effect of diets enriched with onion, garlic and chicory powder by the percent of (2.5 and 5%) on the immunity system parameters of rats.

2. Materials and methods

Materials

Chemicals: Kits for biochemical analysis of serum were purchased from Gama Trade Company for chemicals, Cairo, Egypt.

Plant materials: Onion, Garlic and Chicory were purchased from local market in Shebin El Kom.

Rats and diets: Male albino rats, weighing 150±10g per each were purchased from Medical Insects Research Institute, Dokki, Cairo, Egypt.

Basal diet constituents: were obtained from El-Ghomhoriya Company for and Trading Drugs, Chemicals and Medicals instruments, Cairo, Egypt.

Methods:

Preparation of plant powder:

Plant materials: Garlic and onion powder were purchased from market in Shebin El-Kom, Chicory were collected, cleaned and dried at degree (45), then grinded to soft powder by electric
grinder (Moulinex, France), packed and kept in dusky Stoppard glass bottles in a cool and dry location till use according to (Russo, 2001).

Preparation of basal diet:
The basal diet prepared from protein (10%), corn oil (10%), vitamin mixture (1%), mineral mixture (4%), choline chloride (0.2%), methionine (0.3%), cellulose (5%), and the remained is corn starch (69.5%). The used vitamin mixture component was recommended by (Hegested et al., 1941), while the salt mixture used was formulated according to (Campbell, 1963)

Experimental Design:
Forty-two (42) male albino rats were housed in healthy condition (21-23ºC), with 40-60% humidity and fed on basal diet and water for one-week acclimatization period. Then rats were divided into 7 groups each (6 rats) as following:

- group (1): fed on standard diet only as a control (ve-).
- group (2): fed on diet containing 2.5% Onion.
- group (3): fed on diet containing 5% Onion.
- group (4): fed on diet containing 2.5% Garlic.
- group (5): fed on diet containing 5% Garlic.
- group (6): fed on diet containing 2.5% Chicory.
- group (7): fed on diet containing 5% Chicory.

At the end of the experiment period (4 weeks), animals were fasted for 12-h then rats were scarified. Blood samples were collected from the portal vein into dry clean centrifuge tubes for serum separation, blood samples centrifuged for 10 minutes at 3000 rpm to separate the serum according to (Drury and Wallington, 1980). Serum samples were frozen at – 20 ºC until chemical analysis.
Feed intake (FI) was calculated every other day and body weight gain (BWG) was calculated using the following equation: \[BWG = \text{Final body weight (g)} - \text{Initial body weight (g)} \].

Analytical methods:

Determination of IgA, IgG and IgM:

Serum IgA, IgG and IgM were determined as mg/dl according to the method of (Ernie, 2016), (Junqueira et al., 2003) and (Falkenburg, 2015), respectively.

Determination of HB, HCT and PLT:

Hemoglobin, serum hematocrits and serum platelet count were determined according to the method of (Dacie and Lewis, 2006), (Purves et al., 2004) and (Martina and Daly, 2011), respectively.

Determination of W.B.C.s and R.B.C.s:

W.B.C.s and R.B.C.s were determined according to the method of (Koda-Kimble et al., 2001) and (Lubsandorzhiev, 2006), respectively.

Statistical Analysis:

Data were expressed as mean ± standard deviation. Analysis of Variance (ANOVA) test was used. Values at (P≤0.05) were considered to be statistically significant according to (SAS, 2006).

Results and Discussion

Effect of onion, garlic and chicory powder on feed intake, body weight gain of normal rats

Table (1) illustrate the effect of diet supplemented with onion, garlic and chicory on feed intake (FI) and body weight gain (BWG) of normal rats. Tabulated data showed that there were no
significant differences in mean values of feed intake between most groups. For BWG, showed that there were significant differences in mean values compared with control group.

Similar results were obtained by (Apines et al., 2012) and Amar and Faisan, 2011) they indicated that, onion effects on enhancing growth through different mechanisms either separately or synergistically Contrary to the previous results. Sulfur-containing compounds such as methyl sulfonate methane (MSM) have immunomodulation properties.

Onion improved in body weight gain, this attributed to Sulfer being a component of the antioxidant enzyme Glutathione peroxidase.

Agbebi et al., (2013) indicated that the positive effects of administrating garlic in diets on growth.

On the other hand, these results are disagreement with Gorjipour et al., (2017) noted that, chicory leaf extract did not affect the weight of the rats. These results are disagreement with Manal and Lamiaa (2012) indicated that, onion caused significant reduction in feed intake compared to control group. Slyranda et al., (2011) Indicated that, onion and garlic produced significant increase in body weight of the birds throughout the period of the treatment.
Table (1). Effect of onion, garlic and chicory powder on feed intake, body weight gain of normal rats.

<table>
<thead>
<tr>
<th>Groups</th>
<th>F.I (g/d/rat)</th>
<th>% change of control</th>
<th>B.W.G (g)</th>
<th>% change of control</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean± SD</td>
<td></td>
<td>Mean± SD</td>
<td></td>
</tr>
<tr>
<td>Control (-)</td>
<td>11.1 ± 0.1 a</td>
<td>------</td>
<td>34.96 ± 0.281 e</td>
<td>------</td>
</tr>
<tr>
<td>Onion 2.5%</td>
<td>10.81 ± 0.23 ab</td>
<td>- 2.61</td>
<td>44.5 ± 0.5 a</td>
<td>27.29</td>
</tr>
<tr>
<td>Onion 5%</td>
<td>10.6 ± 0.27 b</td>
<td>- 4.51</td>
<td>41 ± 1 b</td>
<td>17.28</td>
</tr>
<tr>
<td>Garlic 2.5%</td>
<td>11.12 ± 0.01 a</td>
<td>0.18</td>
<td>35.86 ± 0.568 de</td>
<td>2.57</td>
</tr>
<tr>
<td>Garlic 5%</td>
<td>11.09 ± 0.075 a</td>
<td>- 0.09</td>
<td>38.03 ± 0.45 c</td>
<td>8.78</td>
</tr>
<tr>
<td>Chicory 2.5%</td>
<td>10.7 ± 0.12 b</td>
<td>- 3.60</td>
<td>36.9 ± 0.559 b</td>
<td>5.55</td>
</tr>
<tr>
<td>Chicory 5%</td>
<td>10.7 ± 0.05 b</td>
<td>- 3.06</td>
<td>32.98 ± 0.22 f</td>
<td>- 5.66</td>
</tr>
</tbody>
</table>

Means in the same column with different superscript letters are significantly different at p ≤ 0.05.

Effect of onion, garlic and chicory powder on Serum IgA, IgG and IgM (mg/dl) of normal rats.

Table (2) illustrate the effect of diet supplemented with onion, garlic and chicory on IgA, IgG and IgM of normal rats. Data indicated that there were significant increases in mean values of IgA of all supplemented groups compared with control. For IgG, it could be noticed that there were significant increases in mean values of IgG of all supplemented groups compared with control. For IgM, data indicated that there were significant increases in mean values of IgM of all supplemented groups compared with control.

These results are supported by published by (Hanieh et al., 2010) and (Jafari et al, 2008) they reported that, garlic induce of antibody secretion. found that more studies with garlic and its derivatives are necessary in order to clarify the mechanism implicated in immunoglobulin production.
Garlic is rich in organo sulfur compounds containing phytoconstituents such as alliin, allicin, ajoenes, vinylthiins, and flavonoids such as quercetin contribute to the prevention or reduction of the immunosuppressive environment during chronic inflammation (Gaber et al., 2020) and (Jacobs et al., 2007).

Mustafa and Orkide, (2020) reported that Allium sativum may be an acceptable preventive measure against COVID-19 infection to boost immune system cells and to repress the production and secretion of proinflammatory cytokines as well as an adipose tissue derived hormone leptin having the proinflammatory nature.

On the other hand, these results are disagreement with Essam et al., (2017) administrated that, garlic induced a ~60% elevation in IgG levels, but had no significant effects on IgM. Pashaki et al., (2018) reported that, garlic increased IgM in groups compared to control group, no significant effects on IgG.

The immunomodulatory effects of garlic are due to garlic lectin or agglutinin proteins (Chandrashekar and Venkatesh, 2009). Garlic contains these compounds that exhibit a broad spectrum of beneficial effects against microbial infections as well as cardioprotective, anticancerigenic, and anti-inflammatory activity (Fridman et al., 2014).

Garlic and onion could be a promising candidate as an immune modifier, which maintains the homeostasis of immune function and the beneficial effect of both extracts can be considered as a possible means of immune system protection.
Table (2). Effect of onion, garlic and chicory powder on Serum IgA, IgG and IgM (mg/dl) of normal rats.

<table>
<thead>
<tr>
<th>Groups</th>
<th>IgA (mg/dl)</th>
<th>% change of control</th>
<th>IgG (mg/dl)</th>
<th>% change of control</th>
<th>IgM (mg/dl)</th>
<th>% change of control</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean±SD</td>
<td></td>
<td>Mean±SD</td>
<td></td>
<td>Mean±SD</td>
<td></td>
</tr>
<tr>
<td>Control (-)</td>
<td>96.33 ±1.53</td>
<td>------</td>
<td>122.66 ± 2.52</td>
<td>------</td>
<td>101. ± 1d</td>
<td>------</td>
</tr>
<tr>
<td>Onion 2.5%</td>
<td>126 ±2c</td>
<td>30.89</td>
<td>168.67 ± 1.53d</td>
<td>37.51</td>
<td>125 ± 2c</td>
<td>23.76</td>
</tr>
<tr>
<td>Onion 5%</td>
<td>144.33 ±1.53a</td>
<td>49.83</td>
<td>177.33 ± 1.53b</td>
<td>44.69</td>
<td>133.98 ± 0.525a</td>
<td>32.65</td>
</tr>
<tr>
<td>Garlic 2.5%</td>
<td>141.33 ±1.52b</td>
<td>46.71</td>
<td>179 ± 1b</td>
<td>45.93</td>
<td>132.83 ± 0.472a</td>
<td>31.51</td>
</tr>
<tr>
<td>Garlic 5%</td>
<td>145 ± 1a</td>
<td>50.52</td>
<td>184.47 ± 0.5a</td>
<td>50.39</td>
<td>134.5 ± 0.5a</td>
<td>33.17</td>
</tr>
<tr>
<td>Chicory 2.5%</td>
<td>122.93 ±0.84d</td>
<td>27.61</td>
<td>161 ± 1c</td>
<td>31.26</td>
<td>126.43 ± 0.513b</td>
<td>25.18</td>
</tr>
<tr>
<td>Chicory 5%</td>
<td>124.81 ± 0.23cd</td>
<td>29.57</td>
<td>174.57 ± 0.51c</td>
<td>42.32</td>
<td>128 ± 1b</td>
<td>26.73</td>
</tr>
</tbody>
</table>

Means in the same column with different superscript letters are significantly different at p ≤ 0.05.

Effect of onion, garlic and chicory powder on serum Hb(%), HCT(%) and PLT (cm) of normal rats.

Table (3) showed the effect of diet supplemented with onion, garlic and chicory on HB, HCT and PLT of normal rats. Data indicated that there were significant increases in mean values of HB of all supplemented groups compared with control. For HCT, it could be noticed that there were significant increases in mean values of HCT of all supplemented groups compared with control. For PLT, data indicated that there were significant increases in mean values of PLT of all supplemented groups compared with control.

The present study demonstrated that administration of garlic powder induced a considerable increase in some measured blood parameters (Hb, HCT and PLT) this result coincided
with Kalyankar et al. (2013) and Norhan et al., (2015) they revealed that administration of 1.5% garlic in diet induced significant increases in all blood parameters (RBCs, WBCs, Hb and PCV). Also, Thanikachalam et al., (2010) indicated that garlic peel enhanced the hematological parameters.

This elevation in some blood constituents may be due to some constituents of garlic and onion that may play a role in the immune system stimulation and in the function of organs related to blood cell formation such as thymus, spleen.

Allium sativum and its derivatives been proposed as promising candidates for maintaining the homeostasis of the immune system. The complex biochemistry of garlic makes it possible for variations in processing to yield different preparations with differences in final composition and compound proportion (Rodrigo et al., 2015).

This result is in agreement with Pashaki et al., (2018) reported that, garlic increase hemoglobin, hematocrit, had significant increase compared to the control group.

On the other hand, this result disagrees with Mahdieh et al., (2016) they revealed that, chicory significantly reduced hematocrit and hemoglobin.

Table (3). Effect of onion, garlic and chicory powder on serum HB (%), HCT (%) and PLT (cm) of normal rats.

<table>
<thead>
<tr>
<th>Groups</th>
<th>HB (%)</th>
<th>% change of control</th>
<th>HCT (%)</th>
<th>% change of control</th>
<th>PLT (cm)</th>
<th>% change of control</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean± SD</td>
<td></td>
<td>Mean± SD</td>
<td></td>
<td>Mean± SD</td>
<td></td>
</tr>
<tr>
<td>Control (-)</td>
<td>10.4 ± 0.1 c</td>
<td>-----</td>
<td>38 ± 1 e</td>
<td>-----</td>
<td>318.67 ± 2.51 g</td>
<td>-----</td>
</tr>
<tr>
<td>Onion 2.5%</td>
<td>10.73± 0.252 b</td>
<td>3.17</td>
<td>41 ± 1 b</td>
<td>7.89</td>
<td>515.33 ± 1.53 f</td>
<td>61.71</td>
</tr>
<tr>
<td>Onion 5%</td>
<td>11. 5 ±0.2 a</td>
<td>10.58</td>
<td>46.33± 1.53 a</td>
<td>21.92</td>
<td>549.33 ± 4.04 e</td>
<td>72.38</td>
</tr>
<tr>
<td>Garlic 2.5%</td>
<td>11.53 ± 0.153 a</td>
<td>10.87</td>
<td>43 ± 1 b</td>
<td>13.16</td>
<td>620 ± 2 b</td>
<td>94.56</td>
</tr>
<tr>
<td>Garlic 5%</td>
<td>11.6 ± 0.1 a</td>
<td>11.54</td>
<td>47.2 ± 0.72 a</td>
<td>24.21</td>
<td>637.33 ± 3.05 a</td>
<td>99.99</td>
</tr>
</tbody>
</table>
Effect of onion, garlic and chicory powder on Serum WBC and RBC (cm) of normal rats.

Table (4) showed the effect of diet supplemented with onion, garlic and chicory on WBC and RBC of normal rats. Data indicated that there were significant increases in mean values of WBC of all supplemented groups compared with control. For RBC, it could be noticed that there were significant increases in mean values of RBC of all supplemented groups compared with control.

Allium containing substances have antibiotic effects and antibiotics should enable the proliferation of circulating white blood cells considering that white blood cells function to protect the body from teratogens. In similar studies, Meraiyebu et al., (2013) stated that, significant increase in the Lymphocytes count in the animal treated with onion juice extract may be attributed to its major sulfur component.

The present study demonstrated that administration of garlic powder induced a considerable increase in some measured bloodparameters (WBCs) this result coincided with Kalyankar et al., (2013) and Norhan et al., (2015).

These results are in agreement with Ndong and Fall, (2011) Talpur and Ikhwanuddin, (2012) they indicated that, garlic increased RBCs and WBCs count. On the other hand, these results disagree with Pashaki et al., (2018) and Mikail, (2009) they reported that, garlic not had Significant increase RBC but increase in the WBC’s count.
Table (4). Effect of onion, garlic and chicory powder on Serum WBC and RBC (cm) of normal rats.

<table>
<thead>
<tr>
<th>Groups</th>
<th>WBC (cm) Mean± SD</th>
<th>% change of control</th>
<th>RBC (cm) Mean± SD</th>
<th>% change of control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (-)</td>
<td>5.6 ± 0.1<sup>d</sup></td>
<td>-----</td>
<td>6.56 ± 0.05<sup>e</sup></td>
<td>-----</td>
</tr>
<tr>
<td>Onion 2.5%</td>
<td>6.53 ± 0.15<sup>b</sup></td>
<td>16.61</td>
<td>7.07 ± 0.13<sup>b</sup></td>
<td>7.77</td>
</tr>
<tr>
<td>Onion 5%</td>
<td>6.83 ±0.21<sup>a</sup></td>
<td>21.69</td>
<td>7.55 ± 0.06<sup>a</sup></td>
<td>15.09</td>
</tr>
<tr>
<td>Garlic 2.5%</td>
<td>6.3 ± 0.1<sup>b</sup></td>
<td>12.5</td>
<td>6.9 ± 0.1<sup>c</sup></td>
<td>5.18</td>
</tr>
<tr>
<td>Garlic 5%</td>
<td>6.53 ± 0.1<sup>b</sup></td>
<td>16.61</td>
<td>7.48 ± 0.05<sup>a</sup></td>
<td>19.51</td>
</tr>
<tr>
<td>Chicory 2.5%</td>
<td>6.01 ± 0.08<sup>c</sup></td>
<td>7.32</td>
<td>6.69 ± 0.03<sup>d</sup></td>
<td>6.09</td>
</tr>
<tr>
<td>Chicory 5%</td>
<td>6.3 ± 0.05<sup>b</sup></td>
<td>12.5</td>
<td>6.91 ± 0.05<sup>c</sup></td>
<td>5.34</td>
</tr>
</tbody>
</table>

Means in the same column with different litters are significantly (p ≤ 0.05) different.

Conclusion

The tested plants in this study were effective as promoting the immunity system and improvement CBC analysis. The obtained data supported our hypothesis that these plants containing several bioactive compounds which are able to enhance immunity system and blood parameters. We recommended more consumption of the tested plants as fresh or dried in our diets.

References

Falkenburg, W.J.J. (2015). IgG subclass specificity discriminates restricted IgM rheumatoid factor responses from more mature anti-citrullinated protein antibody-associated or isotype-switched IgA responses”. Arthritis & Rheumatology. 67(12):3124-34.

دراسة تأثير مسحوق البصل والثوم والهندباء على بعض مقاييس المناعة في الفئران

زينب سيد أحمد أحمد1 و عبير نزيو عبد الرحمن2

1قسم اقتصاد منزل، كلية التربية النوعية، جامعة أسوان، مصر.
2قسم التغذية وعلوم الأطعمة، كلية الاقتصاد المنزلي، جامعة المنوفية، شبين الكوم، مصر.

الملخص العربي

هدفت الدراسة الحالية إلى توضيح تأثير الأنظمة الغذائية الغنية بالبصل والثوم ومسحوق الهندباء بنسبة 2.5 و 5% على مقاييس المناعة لدى الفئران. اثنان وأربعون (42) من ذكور الجرذان البيضاء (Sprague- dawly) (بورون (150-160 جم) مستخدمة في هذه الدراسة وقسمت إلى 7 مجموعات لكل مجموعة (6 فئران). تلتزم المجموعة الضابطة النظام الغذائي الأساسي طوال فترة التجربة، المجموعة تجريبية الأخرى تضم 36 جرذًا التي تم تغذيتها على نظام غذائي أساسي يحتوي على 2.5 و 5% من مسحوق البصل والثوم الهندباء لمدة (4 أسابيع) وظهرت النتائج أن المأخوذ الغذائي أوضح اختلافات قليلة عند مستوى دلاله إحصائي (p≤0.05)مقارنة بالمجموعة الضابطة. أظهر اكتساب الوزن بعض الاختلافات عند مستوى دلاله إحصائي (p≤0.05)مقارنة بالمجموعة الضابطة. أظهر المظهر المناعي (زيادات معنوية مقارنة بالمجموعة الضابطة التي سجلت +145) IgA،lgG،lgM) CBC (HB، HCT 1,184.47±0.5 and 134.5±0.5 mg/dl) كانت هناك زيادة إحصائية مقارنة بالمجموعة الضابطة التي سجلت (sand PLT 637.33±3.05cm) . بالنسبة

المجلد السابع، العدد الخامس والثلاثون. يوليو 2021
الخلاصة: كانت النباتات المختبرة في هذه الدراسة فعالة في تعزيز نظام المناعة، لذلك أوصينا باستهلاك المزيد من النباتات المختبرة كطازجة أو مجففة في وجباتنا الغذائية بنسبة (5-10 جرام / يوم).

الكلمات المفتاحية:
الغموبولين المناعي A، الغموبولين المناعي M، الغموبولين المناعي G، الهيموجلوبين، الهيماتوكريت، الصفائح الدموية، كريات الدم البيضاء، كريات الدم الحمراء